1,533 research outputs found

    Exploring New Chemotherapeutic Strategies Against Brain Cancer

    Get PDF
    Approximately 4,000 children in the United States are diagnosed each year with a brain tumor. Brain cancers are the deadliest of all pediatric cancers as they have survival rates of less than 20%. Typical treatments include surgery and radiation therapy. However, chemotherapy is the primary therapeutic option for children, especially against aggressive brain tumors. An important chemotherapeutic agent is temozolomide, an alkylating agent that causes cell death by damaging DNA. In this project, we tested the ability of non-natural nucleosides developed in our lab in order to increase the ability of temozolomide to kill brain cancer cells. Our results show that combining low doses of our nucleoside with temozolomide kills more cells compared to treatment with either compound individually. The increase in efficacy is specific for temozolomide as similar effects are not observed in cells treated with other chemotherapeutic agents such as cisplatin, 5-fluorouracil, and taxol. High-field microscopy techniques demonstrate that the combination of our nucleoside and temozolomide causes cell death via apoptosis as opposed to necrosis. A model is provided describing how our novel nucleoside analog increases the cell-killing effects of temozolomide by inhibiting the misreplication of damaged DNA created by this agent. Collectively, these studies provide pharmacological evidence for a new treatment strategy to more effectively treat patients with brain cancers.https://engagedscholarship.csuohio.edu/u_poster_2013/1007/thumbnail.jp

    Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast

    Get PDF
    A combined multidimensional chromatography-mass spectrometry approach known as "MudPIT" enables rapid identification of proteins that interact with a tagged bait while bypassing some of the problems associated with analysis of polypeptides excised from SDS-polyacrylamide gels. However, the reproducibility, success rate, and applicability of MudPIT to the rapid characterization of dozens of proteins have not been reported. We show here that MudPIT reproducibly identified bona fide partners for budding yeast Gcn5p. Additionally, we successfully applied MudPIT to rapidly screen through a collection of tagged polypeptides to identify new protein interactions. Twenty-five proteins involved in transcription and progression through mitosis were modified with a new tandem affinity purification (TAP) tag. TAP-MudPIT analysis of 22 yeast strains that expressed these tagged proteins uncovered known or likely interacting partners for 21 of the baits, a figure that compares favorably with traditional approaches. The proteins identified here comprised 102 previously known and 279 potential physical interactions. Even for the intensively studied Swi2p/Snf2p, the catalytic subunit of the Swi/Snf chromatin remodeling complex, our analysis uncovered a new interacting protein, Rtt102p. Reciprocal tagging and TAP-MudPIT analysis of Rtt102p revealed subunits of both the Swi/Snf and RSC complexes, identifying Rtt102p as a common interactor with, and possible integral component of, these chromatin remodeling machines. Our experience indicates it is feasible for an investigator working with a single ion trap instrument in a conventional molecular/cellular biology laboratory to carry out proteomic characterization of a pathway, organelle, or process (i.e. "pathway proteomics") by systematic application of TAP-MudPIT

    Charting the protein complexome in yeast by mass spectrometry

    Get PDF
    It has become evident over the past few years that many complex cellular processes, including control of the cell cycle and ubiquitin-dependent proteolysis, are carried out by sophisticated multisubunit protein machines that are dynamic in abundance, post-translational modification state, and composition. To understand better the nature of the macromolecular assemblages that carry out the cell cycle and ubiquitin-dependent proteolysis, we have used mass spectrometry extensively over the past few years to characterize both the composition of various protein complexes and the modification states of their subunits. In this article we review some of our recent efforts, and describe a promising new approach for using mass spectrometry to dissect protein interaction networks

    93 IDENTIFICATION OF CHONDROGENIC PROGENITOR CELLS IN INJURED BOVINE ARTICULAR CARTILAGE

    Get PDF

    Inhibiting Translesion DNA Synthesis as an Approach to Combat Drug Resistance to DNA Damaging Agents

    Get PDF
    Anti-cancer agents exert therapeutic effects by damaging DNA. Unfortunately, DNA polymerases can effectively replicate the formed DNA lesions to cause drug resistance and create more aggressive cancers. To understand this process at the cellular level, we developed an artificial nucleoside that visualizes the replication of damaged DNA to identify cells that acquire drug resistance through this mechanism. Visualization is achieved using click chemistry to covalently attach azide-containing fluorophores to the ethynyl group present on the nucleoside analog after its incorporation opposite damaged DNA. Flow cytometry and microscopy techniques demonstrate that the extent of nucleotide incorporation into genomic DNA is enhanced by treatment with DNA damaging agents. In addition, this nucleoside analog inhibits translesion DNA synthesis and synergizes the therapeutic activity of certain anticancer agents such as temozolomide. The combined diagnostic and therapeutic activities of this synthetic nucleoside analog represent a new paradigm in personalized medicine

    Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization

    Get PDF
    Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity

    Core-shell nanoparticle arrays double the strength of steel

    Get PDF
    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material's strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties. ?The Author(s) 2017.1116Ysciescopu

    Computerized Design and Generation of Gear Drives With a Localized Bearing Contact and a Low Level of Transmission Errors

    Get PDF
    A general approach developed for the computerized simulation of loaded gear drives is presented. In this paper the methodology used to localize the bearing contact, provide a parabolic function of transmission errors, and simulate meshing and contact of unloaded gear drives is developed. The approach developed is applied to spur and helical gears, spiral bevel gears, face-gear drives, and worm-gear drives with cylindrical worms

    Optical vortex trap for resonant confinement of metal nanoparticles

    Get PDF
    The confinement and controlled movement of metal nanoparticles and nanorods is an emergent area within optical micromanipulation. In this letter we experimentally realise a novel trapping geometry near the plasmon resonance using an annular light field possessing a helical phasefront that confines the nanoparticle to the vortex core (dark) region. We interpret our data with a theoretical framework based upon the Maxwell stress tensor formulation to elucidate the total forces upon nanometric particles near the particle plasmon resonance. Rotation of the particle due to orbital angular momentum transfer is observed. This geometry may have several advantages for advanced manipulation of metal nanoparticles
    corecore